What Happens Next? Event Prediction Using a Compositional Neural Network Model

نویسندگان

  • Mark Granroth-Wilding
  • Stephen Clark
چکیده

We address the problem of automatically acquiring knowledge of event sequences from text, with the aim of providing a predictive model for use in narrative generation systems. We present a neural network model that simultaneously learns embeddings for words describing events, a function to compose the embeddings into a representation of the event, and a coherence function to predict the strength of association between two events. We introduce a new development of the narrative cloze evaluation task, better suited to a setting where rich information about events is available. We compare models that learn vector-space representations of the events denoted by verbs in chains centering on a single protagonist. We find that recent work on learning vector-space embeddings to capture word meaning can be effectively applied to this task, including simple incorporation of a verb’s arguments in the representation by vector addition. These representations provide a good initialization for learning the richer, compositional model of events with a neural network, vastly outperforming a number of baselines and competitive alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques

The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...

متن کامل

Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm

Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...

متن کامل

Solubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network

The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...

متن کامل

Solubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network

The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...

متن کامل

What Happens Next and when "Next" Happens: Mechanisms of Spatial and Temporal Prediction

This thesis entitled: What happens next and when " next " happens: Mechanisms of spatial and temporal prediction written by Dean R. Wyatte has been approved for the Department of Psychology and Neuroscience Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016